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Abstract

Discovering object classes from images in a fully unsu-
pervised way is an intrinsically ambiguous task; saliency
detection approaches however ease the burden on unsu-
pervised learning. We develop an algorithm for simulta-
neously localizing objects and discovering object classes
via bottom-up (saliency-guided) multiple class learning
(bMCL), and make the following contributions: (1) saliency
detection is adopted to convert unsupervised learning into
multiple instance learning, formulated as bottom-up multi-
ple class learning (bMCL); (2) we utilize the Discrimina-
tive EM (DiscEM) to solve our bMCL problem and show
DiscEM’s connection to the MIL-Boost method[34]; (3) lo-
calizing objects, discovering object classes, and training
object detectors are performed simultaneously in an inte-
grated framework; (4) significant improvements over the
existing methods for multi-class object discovery are ob-
served. In addition, we show single class localization as
a special case in our bMCL framework and we also demon-
strate the advantage of bMCL over purely data-driven
saliency methods.

1. Introduction
The computer vision field has witnessed milestone

achievements in learning object models with full supervi-
sion [33, 11, 30]. However, a large amount of labeled data is
required for these methods to train practically working sys-
tems. Recently, many unsupervised approaches have also
been proposed for the object localization and categorization
tasks [26, 15, 22, 18, 20, 38, 19, 32, 21]. While important
progresses have been made with the encouraging perfor-
mance reported on datasets such as Caltech-101 [10], ETHZ
[13], and MSRC2 [31], most of the existing approaches
work under certain conditions (many have strict constraints
about the problem settings). Such conditions include, e.g.,

large occupation of the foreground objects; no “irrelevant”
other object types; and clean background. However, in prac-
tice objects are often small and not centered in the image.
The background could also be cluttered and present non-
uniformly, as suggested in the unsupervised scene discov-
ery research [23]. How to apply previous approaches in a
general unsupervised setting is not very clear.

A closely related direction to unsupervised learning is
multiple instance learning (MIL) [34, 1, 8] where only im-
age (bag) level labels are given without the detailed anno-
tation of where the objects are. MIL significantly reduces
the efforts in manual labeling for object detection. Further-
more, when multiple object classes are present, it is desir-
able to automatically discover them simultaneously in the
current MIL scheme.

In the machine learning literature, several multiple in-
stance clustering (MIC) algorithms [37, 36] are designed
to perform localized content-based image clustering, which
has relatively less constraints. These methods introduce
multiple instance concept into standard clustering methods
such as K-means and MMC [9, 35]. However, most existing
MIC solutions reported discouraging purity result (37.1%)
[37, 36] in a benchmark dataset SIVAL [25] and they do not
perform simultaneous localization. Therefore, despite the
novel multi-instance concept to unsupervised object discov-
ery problem, the low performance questions the practical
aspects of the current MIC methods. In comparison, state-
of-the-art unsupervised object discovery methods [18, 20]
could achieve about 98% purity result in Caltech-101; how-
ever, when applied to SIVAL, they only obtained 28.3%.

In this paper, we argue that unsupervised object discov-
ery in a general setting might be an ill-posed problem. This
is due to the intrinsic ambiguity of the complex object ap-
pearances and the background clutter. However, it is still
desirable to build such an unsupervised object class dis-
covery with relatively loose constraints. A recent method



[7] used a classifier trained on several classes of objects as
“meta information” to learn other object types. From a dif-
ferent angle, saliency detection has been an active research
area [16, 4, 12] where objects of interest are assumed to
be “salient” in an image. It appears (arguably) that being
salient is a more general concept than classifiers trained on
a specific number of object classes.

Here, we propose a system adopting saliency detection in
a multiple instance learning framework, which has the fol-
lowing new aspects: (1) unlike the direct top-down discov-
ery of object classes in [37, 36] or using specifically trained
classifiers on a number of supervised object classes [7], we
utilize saliency detection (bottom-up method) to guide the
unsupervised object discovery; (2) object localization, ob-
ject class discovery, and object detector training are per-
formed simultaneously in an integrated framework, bMCL;
(3) we develop a general scheme, Discriminative EM (Dis-
cEM), to perform optimization for bMCL, and we show its
connection to MIL-Boost[34]; (4) significant improvements
on challenging benchmark datasets over the exiting systems
are obtained by integrating saliency detection with bMCL.

Although being an active area, saliency detection has yet
to justify its usage for high-level vision tasks and we show
that the saliency-guided notion can indeed be of great help
in the unsupervised object discovery task.

2. Related Work
Tuytelaars et al. [32] surveyed recent unsupervised ob-

ject learning method, but with the focus on the probabilistic
latent models. Here, we briefly discuss the related work
from several different angles.

As stated before, several unsupervised approaches have
recently been proposed for the object localization and cate-
gorization task [26, 15, 22, 18, 20, 38, 19, 32, 21]. Zhu et
al. [38] learned a probabilistic grammar for object classes
(mostly weakly-supervised) but with results reported on a
subset of the Caltech dataset [10], in which the foreground
objects are mostly centered and they occupy a significant
portion of each image. Lee and Grauman [20] grouped
edge/contour fragments into objects without supervision,
but under the requirement of having well-defined (strong)
shape cues for objects.

In the machine learning literature, multiple instance
learning (MIL) [34] and multiple instance clustering (MIC)
[37, 36] are used to learn single and multiple object classes
respectively. Since no “negative” images are present and no
specific prior information about foreground objects is used,
MIC [37, 36] reported poor results on challenging datasets
like SIVAL [25].

Another recent active research field is saliency detection.
Impressive results have been reported using mostly bottom-
up (data-driven) processes [16, 4, 12]. In addition to esti-
mate pixels’ saliency [16, 4], window saliency is proposed
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Figure 1: (a) The localization results obtained by our algorithm, bMCL.
(b) The original images from SIVAL[25].

and computed in [12]. Multiple images are utilized to per-
form co-saliency in [3] but they are mostly focused on the
single-class unsupervised co-segmentation task rather than
localizing and learning multiple object models. Despite the
substantial interests in computer vision, saliency detection
has received relatively less attention to the object discovery
community. In [27], the most “salient” regions are selected
to update the models based on a fixed matching threshold.

We adopt the bottom-up saliency cues into an inter-
graded learning framework to localize objects, discover ob-
ject classes, and train discriminative object models at the
same time, which differs our method from all the previous
approaches. Other work using bottom-up cues focuses on
multiple segmentations [26] or emphasizes on self-paced
discovery that progressively accumulates models[21].

3. Saliency-Guided Notion
We argue that the problem of unsupervised object dis-

covery is an ambiguous task in general conditions. Thus,
we utilize bottom-up saliency detection to guide the learn-
ing process and turn unsupervised learning into weakly su-
pervised learning.

Ambiguity of unsupervised object discovery
In an investigation experiment on the SIVAL dataset, we

asked 10 participants to divide two groups of images into
three categories. While all the participants divided first
group (Figure 1a) into three object classes without a second
thought, they felt confused and spent much more time on
the second group (Figure 1b). Finally, 7 people divided the
second group into apples, toys, and books while the other
3 people categorized images as different scenes. The diffi-
culty that human vision encounters here reveals the strong
ambiguity in unsupervised object discovery, especially for
complex objects and backgrounds. Without a prior knowl-
edge, clustering based algorithms [9, 35, 37, 36] may fail to
tell the objects from the background clutter.

Window-based saliency detection
Saliency detection (mostly bottom-up) can be used to

guide the object discovery task for two reasons: (1) con-
ceptually, it is a strong prior that many observed objects are



Figure 2: Example of bags and instances: Blue rectangle: the desired ob-
ject window. Yellow rectangle: the most salient window obtained by [12];
Red rectangles: top salient windows as instances in positive bag; Green
rectangles: randomly sampled and least salient windows as instances in
negative bag.

salient in the training images; 2) practically, simple, effi-
cient and effective saliency detection methods [4, 16, 12]
deliver encouraging results on challenging images.

In particular, window-based saliency [12] is proposed to
measure how likely an image window contains a salient ob-
ject. This method computes the saliency scores for all win-
dows and outputs the locally optimal ones as object candi-
dates. Although the complex background may create many
false detections, we observe that the objects are mostly cov-
ered in the top ranked windows, as shown in Figure 2.

From unsupervised object discovery to weakly super-
vised learning

The observation is validated in SIVAL dataset and we
find that 98% objects are covered in the top 70 salient win-
dows. This nice property naturally allows us to define pos-
itive and negative bags, which are then used in multiple in-
stance learning. Specifically, for each image a positive (ob-
ject) bag consists of detected top salient windows and a neg-
ative (background) bag consists of randomly sampled and
least salient windows, as illustrated in Figure 2. In this way,
we convert unsupervised object discovery into a weakly su-
pervised learning problem.

4. Our formulation
In the following sections, we introduce a new learn-

ing method, bottom-up multiple class learning (bMCL) and
show how to perform its optimization.

4.1. Review of Multiple Instance Learning

Multiple instance learning (MIL) is a popular approach
in weakly supervised learning. Here we give a brief
overview and focus on the boosting based MIL approaches
[34, 1, 8]. In MIL, each bag xi ∈ Xm consists of a set
of instances {xi1, . . . , xim}(xij ∈ X ) . While each bag
xi has a class label yi ∈ Y = {−1, 1} as training input,
instance labels yij ∈ Y are unknown and treated as hid-
den variables. A bag is positive if at least one instance is
positive and a bag is negative if its all instances are neg-
ative, i.e. yi = maxj (yij). For notation simplicity, we

assume each bag has the same number of instances, i.e.
ni = m (i = 1, . . . , n).

Standard boosting [14, 24] assumes an additive model
on instance-level decisions: hij = h(xij) where h(xij) =∑
t λtht(xij) is a weighted vote of weak classifiers ht :

X → Y . Assuming that yij ∈ Y is the hidden instance
label, its probability as positive is given by:

pij = Pr(yij = 1|xij ;h) =
1

1 + exp (−hij)
. (1)

The bag-level probability is computed via a Noisy-OR
(NOR) model:

pi = Pr(yi = 1|xi;h) = 1−
m∏
j=1

(1− pij). (2)

Since the bag label is given in the training set, we can
optimize the negative log-likelihood function: LMIL =
−
∑n
i=1 (1(yi = 1) log pi + 1(yi = −1) log (1− pi)), by

greedy search for ht over a weak classifier candidate pool,
followed by a line search for λt. 1(·) is an indicator
function. According to the AnyBoost[24] framework, the
weight wij on each instance xij is updated as:

wij = −
∂LMIL

∂hij
=


− 1

1− pij
∂pij
∂hij

if yi = −1

1− pi
pi(1− pij)

∂pij
∂hij

if yi = 1

(3)

4.2. Bottom-up Multiple Class Learning

Previous MIL solutions cannot be directly applied in un-
supervised object discovery since they assume the single
class among positive bags. While multiple instance cluster-
ing (MIC) approaches [37, 36] are designed to explore hid-
den patterns in multiple classes, their performance is poor
because they treat all the images as positive bags and there
are no negative bags.

In bMCL, we propose a maximum margin clustering
concept [35] into the MIL scheme. The overall formulation
tries to (1) discriminate the positive (object) instances from
negative (background) instances; (2) maximize the differ-
ence between different object classes in the positive bags.

Given K object classes and N unlabeled images, we
obtain n = 2N bags (N positive bags and N negative
bags based on bottom-up saliency detection). There are two
kinds of hidden variables in bMCL: 1) the instance-level la-
bel yij for each instance xij in bag xi and 2) the class latent
label kij ∈ K = {0, 1, . . . ,K} for the instance xij that be-
longs to the kth class (we denote kij = 0 and ki = 0 for the
negative instance and bag respectively). Here, we assume
the existence of only one foreground object class in each
positive bag; that is, we allow one class of objects to appear
in each image. Thus, the class label ki for each positive bag



is defined based on the class labels of its instances as

ki = k ⇐⇒ ∀j, kij ∈ {0, k} and max
j

(kij) = k (4)

where k ∈ {1, ...,K}. Throughout the paper, we denote
H = (HK , HI) as hidden variables where HK = {ki, i =
1, .., n} and HI = {yij , i = 1, .., n, j = 1, ..,m} (Please
notice that kij = yij · ki).

For bags X = {x1, . . . , xn} with their corresponding
labels Y = {y1, . . . , yn}, we define the overall negative
log-likelihood function L(θ;Y,X) as

L(θ;Y,X) = − log Pr(Y |X; θ) = − log
∑
HK

Pr(Y,HK |X; θ)

= − log
∑
HK

∑
HI

Pr(Y,H|X; θ),

(5)

where the model parameter θ = {h1, .., hk, .., hK} and
hk is the appearance model for the kth object class. The
evaluation score for xij to the kth class is computed as
qkij = qk(xij) =

1
1+exp (−hk

ij)
where hkij = hk(xij). Thus,

we compute the instance-level probability as

pkij = Pr(kij = k|xij ; θ) ∝
K∏
t=1

(qtij)
1(t=k)(1− qtij)1(t6=k).

(6)
Next, we derive the probability Pr(Y,HK |X; θ); we as-

sume all the bags being conditionally independent:

Pr(Y,HK |X; θ) =

n∏
i=1

Pr(yi, ki|xi; θ) =
n∏
i=1

[Pr(ki|xi; θ)·si],

(7)
where si = 1((yi = −1 ∧ ki = 0) ∨ (yi = 1 ∧ ki 6= 0)).

For each positive or negative bag, because the full deriva-
tion is combinatorial, we approximate its probability as

Pr(ki = k|xi; θ) ≈
K∏
t=1

[
(qti)

1(t=k)(1− qti)1(t 6=k)
]

(8)

where qti = Pr(∃j, kij = t|xi; θ) = 1 −
∏m
j=1 (1− ptij)

denotes the measure for at least one instance xij in bag xi
belonging to the tth class. Then Pr(Y,HK |X; θ) can be
denoted in a class-wise manner:

Pr(Y,HK |X; θ) ∝
K∏
t=1

n∏
i=1

[
(qti)

1(t=ki)(1− qti)1(t 6=ki) · si
]
.

(9)

We could further explicitly use the instance-level hid-
den variables HI and denote Pr(Y,H|X; θ). Simi-
lar to the overall loss function L(θ;Y,X), we also

define the bag-level loss function L(θ;Y,X,HK) =
− log Pr(Y,HK |X; θ) and the instance-level loss function
L(θ;Y,X,H) = − log Pr(Y,H|X; θ), which will be later
used in our Discriminative EM (DiscEM) algorithm (See
the next section).

In DiscEM, if the expectation of H = {HK , HI} is esti-
mated, we could decompose the minimization of the overall
loss function d

dθL(θ;Y,X) into d
dθL(θ;Y,X,H) and opti-

mizeK standard boosting additive models on instance-level
decisions: hkij = hk(xij), where hk(xij) =

∑
t λth

k
t (xij)

is a weighted vote of weak classifiers hkt : X → Y .
In this way, if we could well estimate the hidden vari-
ables H , bMCL can be solved with standard boosting
framework[24]. Dealing with the hidden variables H falls
into an EM flavor of solution[6]. Next, we discuss the de-
tails of our solution to eqn.(5).

5. Discriminative EM
The optimization of eqn.(5) deals with the hidden vari-

ables H . To solve the problem, we give a general formu-
lation of Discriminative EM (DiscEM) algorithm, which
performs discriminative learning in the presence of hidden
variables. We directly apply the DiscEM to explore the hid-
den variables H in bMCL. We also observe that under the
MIL assumption, MIL-Boost[34] is equivalent to this for-
mulation. Based on this observation, the EM step for the
instance-level hidden variables HI is dealt with in a stan-
dard MIL-Boost and we only tackle the class labels HK

explicitly. Furthermore, because DiscEM is a general dis-
criminative learning framework in the presence of hidden
variables, it can be applied to other situations with hidden
space of explicit forms.

5.1. General DiscEM Formulation

Now we will do discriminative learning with the pres-
ence of hidden variables. Our step is similar to standard
EM[6] while the primary difference is that we are given la-
bels Y = {y1, . . . , yn} in addition to observations X =
{x1, . . . , xn}, and we want to estimate the model θ that
minimizes the negative log-likelihood function L(θ;Y,X)
As before, we proceed by integrating H out:

Theorem 1. The discriminative expectation maximization
(DiscEM) algorithm optimizes the training set log likeli-
hood L(θ;Y,X) w.r.t. model parameters θ in the presence
of hidden variable H , via
d

dθ
L(θ;Y,X) = EH∼Pr(H|Y,X;θ)

d

dθ
L(θ;Y,X,H), (10)

where L(θ;Y,X,H) = − log Pr(Y,H|X; θ). Notice that
Pr(H|Y,X; θ) = Pr(Y,H|X;θ)

Pr(Y |X;θ) and X , Y are given.

The general form of DiscEM is similar to the standard
EM. We iteratively improve an initial estimate θ0 with suc-



cessively better estimates θ1, θ2, ..., and so on until conver-
gence. Each phase r consists of two steps:
E step: Compute Pr(H|Y,X; θ) via previous estimate θr.
M step: Update θr+1 by minimizing L(θ;Y,X).

Note that in the above formulation, parameter θ can be
purely discriminative, i.e. they are parameters of classifiers.
In this way, DiscEM can take the advantages of discrimi-
native learning algorithms. This contracts DiscEM to other
conditional-EM frameworks[17, 28], where the task is to
learn generative parameters through a discriminative objec-
tive. Compared with standard supervised algorithms, Dis-
cEM can better handle hidden variables and embrace the
weakly supervised learning setting.

Assuming all the data are conditionally independent
i.e.Pr(Y |X; θ) =

∏n
i=1 Pr(yi|xi; θ), we give the main in-

sight connecting MIL-Boost[34] and DiscEM:
Theorem 2. When the instance-level model (1) and the
bag-level model (2) are used, MIL-Boost’s update rule (3)
is equivalent to DiscEM, which reads:

d

dθ
log Pr(yi|xi; θ) =



m∑
j=1

−1
1− pij

d

dθ
pij if yi = −1

m∑
j=1

1− pi
pi(1− pij)

d

dθ
pij if yi = 1

(11)

Proof: due to the space limit, we show the proof of two
theorems in the supplementary material.

The above DiscEM formulation of MIL-Boost partly ex-
plains its success. However, since MIL-Boost combines
weak classifiers, which can not easily attain the optimum
in the M step, it has to incorporate a gradient descent strat-
egy in the function space [24].

5.2. DiscEM for bMCL

DiscEM could be directly applied to bMCL since bMCL
forms an optimization problem for discriminative cost func-
tion L(θ;Y,X) under the complex hidden variables H =
(HK , HI) in eqn.(5) . Based on Theorem 1, we could al-
ternate between E step (applying model θr to obtain the
probability estimation of instance labels Hr

I and class la-
bels Hr

K , and sampling) and M step (train new classifiers
based on sampled data). Furthermore, taking advantage of
the equivalence between DiscEM and MIL-Boost, we could
replace the EM step for the instance labelsHI by a standard
MIL-Boost[34] and only need to integrate HK out.

We use Theorem 1 to rewrite d
dθL(θ;Y,X) as

d

dθ
L(θ;Y,X) = EHK∼Pr(HK |Y,X,θ)[

d

dθ
L(θ;Y,X,HK)].

(12)
The loss function could be decomposed in a class-wise

manner, i.e.L(θ;Y,X,HK) =
∑K
k=1 Lk(hk;Y,X,HK).

Using eqn.(9), Lk(hk;Y,X,HK) can be computed as:

Lk(hk;Y,X,HK) = −
n∑
i=1

[1(k = ki) log q
k
i

+ 1(k 6= ki) log (1− qki )],
(13)

which is valid when all the (yi, ki) in (Y,Hk) satisfy the
condition si = 1((yi = −1∧ ki = 0)∨ (yi = 1∧ ki 6= 0)),
as shown in eqn.(9). Note that there is a normalization term
in eqn.(9); we ignore it here for computational simplicity
since it is close to 1; ignoring it does not affect the general
formulation of DiscEM in eqn. (12).

Eqn.(13) essentially builds K classifiers with each clas-
sifier hk takes bags labeled class k as positive bags and all
the rest as negative bags, and minimizes Lk(hk;Y,X,HK)
separately. This formulation can one way be understood
as maximizing margins among positive bags of different
classes and also the negative bags, since both SVM and
Boosting maximize the margin explicitly and implicitly re-
spectively.

For each Lk(hk;Y,X,HK), hidden instance variables
HI could be further integrated out:

d

dθ
Lk(hk;Y,X,HK) =

EHI∼Pr(HI |Y,HK ,X;θ)[
d

dθ
Lk(hk;Y,X,H)].

(14)

However, since Lk(hk;Y,X,HK) is the same cost func-
tion discussed in Theorem 2, rather than integrating HI

out in eqn.(14), we use a standard boosting based MIL
approach[34] to minimize the cost function.

Algorithm 1 Bottom-up Multiple Class Learning

Input: Bags {x1, . . . , xn}, {y1, . . . , yn}, T,K,H0
K .

Output: K discriminative classifiers: h1, . . . , hK .
r = 0 .
repeat
r = r + 1.
for k = 1→ K do {M Step}

Given class variables Hr−1
K , group terms

Lk(hkr ;Y,X,Hr−1
K ) by class indices.

Train a strong MIL classifier hkr to minimize
Lk(hkr ;Y,X,Hr−1

K ) via MIL-Boost. T is the num-
ber of weak classifiers in MIL-Boost.

end for
for i = 1→ n do {E Step}

Compute Pr(yi = 1, ki = k|xi; θr) using estimated
model θr = {h1r, . . . , hKr }. Sample ki via Pr(ki =
k|yi = 1, xi; θr) ∼ Pr(yi = 1, ki = k|xi; θr).

end for
until Hr

K = Hr−1
K

Details of bMCL are illustrated in Algorithm 1. We iter-
ate between M step and E step until no class labels Hr

K are
changed. To obtain a good initialization, we collect all the



top salient Sc windows in all the images, obtain K initial
clusters using K-means[9], and sample the H0

K based on
Pr(yi = 1, ki = k|xi; θ0) ∝ 1/(1 + exp(−σ||xi − ck||2))
where ck is the centroid of the kth cluster.

6. Experiments
Dataset Our goal is to perform unsupervised object class

discovery under general conditions. As most frequently
used databases[10, 13, 31] in this problem have specific
constraints as discussed earlier, we turn to more challenging
vision benchmarks, briefly described below.

SIVAL dataset [25] is frequently used in MIL, semi-
supervised learning, and image retrieval. It is a difficult set
because the scenes are highly diverse and often complex
and the objects may occur anywhere spatially in the image
and also may be photographed with different orientations.
Similar as in [36, 37], we randomly partition the 25 object
classes into 5 groups, named from SIVAL1 to SIVAL5.

CMU-Cornell iCoseg dataset [2] is designed for co-
segmentation and contains 38 object classes. We construct a
challenging subset, named CC, containing five classes with
certain similarities in object appearances and backgrounds:
two kinds of red planes, helicopter, kite, and hot balloon.

3D object category dataset [29] contains 10 object
classes, where each class contains 10 different object in-
stances imaged under different viewpoints and distances.
We randomly select one object instance from each class and
partition the 10 sub-classes into two datasets, named 3D1
and 3D2. To increase the challenge, only images with the
smallest object scale are included.

Parameters and features: In bMCL, the positive bag is
fixed to the top 70 salient windows returned by [12], and
the negative bag is the 40 least salient windows from a large
set of random windows. The other parameters are fixed as
K = 5, T = 100, Sc = 3, σ = 0.1. We use Color Moment,
Edge Histogram, and GIST as window representation. De-
cision stump is used as the weak classifier throughout the
experiment.

6.1. Simultaneous categorization and localization

We show the superior performance of bMCL over
two recent multiple instance clustering (MIC) approaches
M3IC [36] and BAMIC [37] (we compare with the best dis-
tance metric of those used in BAMIC), and one state-of-the-
art unsupervised object discovery approach [18] (UnSL),
which achieves top performance (about 98% purity) on a
Caltech-101 subset [10]. We use their implementations and
the same parameters as those in the original work. The same
feature space for bMCL is provided to BAMIC and M3IC.

There has been little work on exploiting saliency for the
task, except [27]. We implement a saliency detection based
baseline (SD) by selecting the most “salient” window ob-
tained by [12] in each image and clustering such windows

bMCL SD M3IC BAMIC UnSL
SIVAL1 95.3 80.4 39.3 38.0 27.0
SIVAL2 84.0 71.7 40.0 33.3 35.3
SIVAL3 74.7 62.7 37.3 38.7 26.7
SIVAL4 94.0 86.0 33.0 37.7 27.3
SIVAL5 75.3 70.3 35.3 37.7 25.0

CC 80.0 73.9 46.1 47.8 60.0
3D1 81.1 64.0 46.9 43.2 37.3
3D2 85.6 82.9 52.3 51.4 37.5

Table 1: Object categorization performance measured by the
mean purity. We compare bMCL with recent MIC approaches
M3IC[36], BAMIC[37], one state-of-the-art unsupervised discovery
method, UnSL[18] and SD (saliency detection baseline), more reasonable
than [27].

by K-means [9]. This baseline is more reasonable than the
straightforward and greedy method in [27].

In bMCL, we use learned object detectors to evaluate the
densely sampled (multi-scale, multi-size) image windows
and output the class label ki and the instance xij (window)
with the highest probability pkij for each bag xi (image).

Similar as in previous work [20, 19], purity is used as
the evaluation metric for the categorization problem, which
measures the extent to which a cluster contains images of
a single dominant class. Table 1 reports the mean purity
results of 10 runs for all the methods, and shows that bMCL
outperforms all the other methods by a large margin.

The performance gap can be well explained by the il-
lustrative results shown in Figure 3. MIC approaches
(BAMIC [37] and M3IC [36]) do not explicitly differenti-
ate objects from backgrounds (no negative bags) and can
be easily confused by similar backgrounds. Besides, MIC
methods cannot perform object localization. The keypoint
based UnSL [18] approach lacks a spatial constraint on
keypoints and the found object keypoints are scatted over
the entire image. By contrast, bMCL finds an object class
only when multiple salient windows from different images
agrees with each other, which is a better constraint under
more general conditions (different object sizes and complex
background). Note that the saliency detection alone is far
from perfection, as shown in the first row in Figure 3.

6.2. Detecting novel objects using learned detector

Previous unsupervised object discovery methods cannot
obtain discriminative object models in an integrated man-
ner. They are either restricted to only categorization (no
object localization) [22, 18, 38], or have to resort to a sep-
arate detector training process using their localization re-
sults [15, 19, 21], or only obtain specialized detectors such
as chamfer distance based shape templates [20]. By con-
trast, bMCL integrates the detector training into the frame-
work for generic object classes.

To validate the generalization ability of such learned de-
tectors, we randomly withdraw 5 images from each object



Figure 3: Illustrative categorization results of four methods in two object classes, left from SIVAL1 [25] and right from CC [2]. From top to down: bMCL,
M3IC [36], BAMIC [37] and UnSL [18]. In bMCL, the yellow rectangle is the localized object and the white rectangle is the most salient window computed
by [12]. In UnSL, the learned object keypoints are overlayed (red points). See Section 6.1 for detailed discussions.

Figure 4: Novel object detection results in 3D object dataset[2]. Color
rectangles: the bMCL’s localization and classification result. White rect-
angles: saliency detection results by [12].

apple book candle note scrunge
bMCL 0.65 0.75 0.66 0.65 0.68

[12] 0.69 0.74 0.62 0.54 0.61
[4] 0.49 0.71 0.43 0.62 0.52

Table 2: Comparison of co-saliency using bMCL with state-of-the-art
saliency detection methods [12, 4] in F-measure of five SIVAL classes: ap-
ple, dataminingbook (book), candlewithholder (candle), stripednotebook
(note), and bluescrunge (scrunge).

class, train bMCL models using the remaining images, and
detect the object in the withdrawn images as described in
Section 6.1. The detection accuracy1 over SIVAL (averaged
over 5 SIVAL datasets), CC and 3D (averaged over 3D1
and 3D2) is 74.4%, 72.0% and 76.0%, respectively. Note
that such average categorization purity results on the three
datasets in Table 1 are 84.7%, 80.0% and 83.4%, respec-
tively. We consider the detection accuracy as satisfactory
enough since the detectors are trained on a smaller training
set. Figure 4 shows exemplar detection results.

6.3. Extra properties about bMCL

bMCL performs multi-class object discovery in an inte-
grated framework. Here we briefly illustrate that some spe-
cific tasks are indeed special cases of our bMCL formula-

1A detected object is correct if its category is correct and its overlap
with ground truth object is larger than 50%

bMCL [7] [5] [26]
PASCAL 06 45 49 34 27
PASCAL 07 31 28 19 14

Table 3: Comparison with previous weakly supervised learning methods,
measured in CorLoc [7]. We follow the same experimental setting as [7]
and cite their reported results for [26, 5, 7].

tion. These include methods like co-saliency [3] and weakly
supervised object localization and learning [26, 5, 7].

Co-saliency is a relatively new concept proposed in [3]
and used to perform co-segmentation of the same object in-
stance in multiple images. However, the advantage of using
co-saliency prior for co-segmentation task is not very clear
since the improvement over single-image saliency prior is
marginal (about 1%).

Our framework can be used to find the same salient
object in multiple images, when K = 1. Its efficacy
is validated using the two state-of-the-art saliency meth-
ods [12, 4]2. The most salient window in bMCL is obtained
as described in Section 6.1. For [4], the smallest rectangle
containing 95% of total saliency pixels is regarded as the
most salient window in each image. In [12], it is the window
with the best saliency score. Comparison of F-measure [4]
of three methods in all 25 SIVAL [25] classes clearly shows
that bMCL outperforms methods in [12, 4] (better than [4]
in all classes and better than [12] in 22 classes). Table 2 re-
ports the results on five randomly selected classes. Superior
performance of bMCL shows that utilizing the inter-image
knowledge in a top-down manner can improve the bottom-
up saliency detection.

Weakly supervised learning with a single object class
Previous work [26, 5, 7] addresses the problem of localiz-
ing objects of a single class and learning a corresponding

2We use the implementations from the authors.



Figure 5: Red rectangles: object localization results of bMCL with a
single object class (bicycle or horse) on the challenging PASCAL 07.

detector. Similarly, bMCL can actualy fit this task by set-
ting K = 1. Table 3 shows that bMCL outperforms [26, 5]
and is comparable with [7] on the challenging PASCAL
datasets. Note that the method in [7] trains varying meta-
information classifiers for different datasets whereas bMCL
adopts bottom-up saliency detection to discover multi-class
objects, which is more general, efficient and convenient in
practice. Figure 5 illustrates exemplar object localization
results on PASCAL VOC 07.

7. Conclusion
In this paper, we have introduced a new learning algo-

rithm, bottom-up multiple class learning, which performs
object localization, object class discovery, and object de-
tector training in an integrated framework. We show the
great advantage of the proposed method on a variety of
benchmark datasets. We also demonstrate that our method
achieves comparative results on a range of extra tasks in-
cluding co-saliency and weakly supervised learning with
the single class. Moreover, our saliency-guided notion may
arouse more attention on utilizing the saliency measure for
high-level vision applications in the future.
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